If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-23h+22=0
a = 1; b = -23; c = +22;
Δ = b2-4ac
Δ = -232-4·1·22
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-21}{2*1}=\frac{2}{2} =1 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+21}{2*1}=\frac{44}{2} =22 $
| -2x+5=x-5 | | 6y+8=21 | | 3d^2+40d+13=0 | | 49h^2-14h+1=0 | | 3t^2-25t+8=0 | | X=(15x+22)° | | 168+x+78=180 | | 4y+9y=24 | | 78+90+x=168 | | 78+90+x=169 | | -6q-3=-6q-5 | | –4r+10r=6r | | 5x+8=16-10x | | 16q^2+26q+3=0 | | |5x-1|=x-17 | | 5x-100=95 | | 2=x7 | | 26+66+x=180 | | 26+66=x | | g^2+26g+25=0 | | 3y^2-43y+14=0 | | 2g^2-11g-13=0 | | 3x+11=4x-29 | | 2q^2-19q+9=0 | | 72=9+7q | | (5x-4)/3=(11x+2)/8 | | X/27/100=x/12. | | −2r−14= 1414 | | -2x+3=-(-x+6) | | -2x+3=-(-1+6) | | 6x²-24x+24=0 | | 3x-6=159 |